# metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

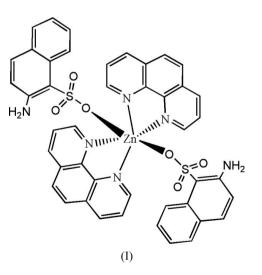
## Pei-Xia Dai, Jian-Hua Guo and En-Cui Yang\*

College of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China

Correspondence e-mail: hsxyyec@mail.tjnu.edu.cn

#### **Key indicators**

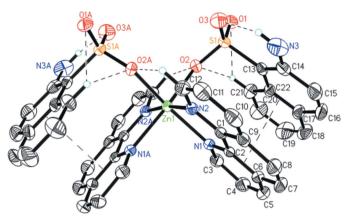
Single-crystal X-ray study T = 293 K Mean  $\sigma$ (C–C) = 0.004 Å R factor = 0.023 wR factor = 0.060 Data-to-parameter ratio = 12.6


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Bis(2-aminonaphthalene-1-sulfonato- $\kappa O$ )-bis(1,10-phenanthroline)zinc(II)

In the title compound,  $[Zn(C_{10}H_8NO_3S)_2(C_{12}H_8N_2)_2]$ , the  $Zn^{II}$  atom lies on a crystallographic twofold axis and is in a distorted octahedral coordination geometry formed by four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from two 2-aminonaphthalene-1-sulfonate ligands. In the crystal structure, intermolecular N-H···O and C-H···O hydrogen bonds link molecules to form a three-dimensional network. In addition, there is a single intramolecular  $\pi$ - $\pi$  stacking interaction.

#### Comment


Sulfonates are not widely used as ligands, as the sulfonate group was traditionally thought to be a poor ligand and it was difficult for it to form stable coordinate bonds with transition metal ions (Kosnic *et al.*, 1992; Dalrymple *et al.*, 2002; Dalrymple & Shimizu, 2002). Recently some transition metal complexes with sulfonate anion-based ligands have been obtained by introducing other organic ligands to the metal centers as auxiliaries (Cai, Chen, Liao, Feng *et al.*, 2001; Cai, Chen, Liao, Yao *et al.*, 2001; Chen *et al.*, 2002), indicating that the coordination strength of sulfonate anions is tunable. As part of our investigation of the coordination chemistry of aromatic sulfonate anions, we report here the crystal structure of a  $Zn^{II}$  complex with 1,10-phenanthroline and 2-amino-naphthalene-1-sulfonate, (I).



The molecular structure of the title mononuclear complex is shown in Fig. 1 and selected bond lengths and angles are listed in Table 1. The Zn<sup>II</sup> center exhibits a distorted octahedral coordination geometry involving four N-atom donors from two chelating 1,10-phenanthroline ligands, and two sulfonate

© 2006 International Union of Crystallography All rights reserved Received 14 July 2006 Accepted 20 July 2006

Flack parameter: 0.017 (10)





The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Only H atoms involved in hydrogen bonds have been included. The short dashed lines indicate intramolecular hydrogen bonds and the long dashes indicate  $\pi - \pi$  stacking interactions [Symmetry code: (A) y - 1, 1 + x, -z].

O atoms from two 2-aminonaphthalene-1-sulfonate ligands. 1,10-Phenanthroline acts as a typical asymmetric chelating ligand coordinating to the Zn<sup>II</sup> atom with the Zn1-N2 bond 0.023 Å shorter than Zn1-N1. The 2-aminonaphthalene-1sulfonate ligand coordinates in a monodentate mode. There is a single intramolecular  $\pi$ - $\pi$  stacking interaction between the naphthalene ring system and the quinoline ring system of the 1,10-phenanthroline ligand, with a centroid-centroid distance of 3.6812 (2) Å and a dihedral angle between rings of 4.99 (5)°. In the crystal structure, intermolecular  $N-H \cdots O$ and  $C-H \cdots O$  hydrogen bonds link complex molecules to form a three-dimensional network (Table 2 and Fig. 2).

### **Experimental**

The title complex was synthesized by heating a mixture of Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (87.8 mg, 0.4 mmol), 1,10-phenanthroline (39.64 mg, 0.2 mmol), 2-aminonaphthalene-1-sulfonic acid (89.3 mg, 0.4 mmol), NaOH (0.6 mmol) and H<sub>2</sub>O (12 ml) in a 23 ml Teflon-lined autoclave under autogenous pressure at 413 K for 2 d. After the reaction mixture was slowly cooled to room temperature at a rate of 5 K  $h^{-1}$ , pale-yellow block crystals suitable for X-ray analysis were obtained in 40% yield. Analysis calculated for  $C_{44}H_{32}ZnN_6O_6S_2$ : C 60.73, H 3.71, N 9.66%; found: C 60.50, H 3.65, N 9.76%.

20667 measured reflections

 $R_{\rm int}=0.029$ 

 $\theta_{\rm max} = 25.0^\circ$ 

3362 independent reflections

3176 reflections with  $I > 2\sigma(I)$ 

#### Crystal data

| $[Zn(C_{10}H_8NO_3S)_2(C_{12}H_8N_2)_2]$ | $D_x = 1.517 \text{ Mg m}^{-3}$           |
|------------------------------------------|-------------------------------------------|
| $M_r = 870.25$                           | Mo $K\alpha$ radiation                    |
| Tetragonal, $P4_12_12$                   | $\mu = 0.82 \text{ mm}^{-1}$              |
| a = 12.4631 (7)Å                         | T = 293 (2) K                             |
| c = 24.538 (3) Å                         | Block, pale yellow                        |
| V = 3811.4 (6) Å <sup>3</sup>            | $0.28 \times 0.20 \times 0.18 \text{ mm}$ |
| Z = 4                                    |                                           |
|                                          |                                           |

#### Data collection

Bruker APEX-II CCD areadetector diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.822, T_{\max} = 0.864$ 

n

#### Figure 2

Part of the crystal structure of (I), showing  $N-H\cdots O$  and  $C-H\cdots O$ hydrogen bonds as dashed lines. Only H atoms involved in hydrogen bonds have been included.

Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_0^2) + (0.0281P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.023$ | + 0.6697P]                                                 |
| $wR(F^2) = 0.060$               | where $P = (F_0^2 + 2F_c^2)/3$                             |
| S = 1.05                        | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 3362 reflections                | $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 267 parameters                  | $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$ |
| H-atom parameters constrained   | Absolute structure: Flack (1983),                          |
|                                 | 1365 Friedel pairs                                         |

#### Table 1

Selected geometric parameters (Å, °).

| Zn1-O2<br>Zn1-N2                                                                                                             | 2.0855 (14)<br>2.1634 (16)                                      | Zn1-N1                                                       | 2.1865 (16)                                      |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|
| $\begin{array}{c} O2^{i} - Zn1 - O2\\ O2 - Zn1 - N2^{i}\\ O2 - Zn1 - N2\\ N2^{i} - Zn1 - N2\\ O2 - Zn1 - N1^{i} \end{array}$ | 89.89 (8)<br>85.99 (6)<br>99.42 (6)<br>172.41 (9)<br>162.46 (6) | $N2-Zn1-N1^{i}$<br>O2-Zn1-N1<br>N2-Zn1-N1<br>$N1^{i}-Zn1-N1$ | 97.97 (6)<br>93.60 (6)<br>76.48 (7)<br>88.23 (9) |

Symmetry code: (i) y - 1, x + 1, -z.

| Table 2       |            |       |     |
|---------------|------------|-------|-----|
| Hydrogen-bond | geometry ( | (Å, ' | °). |

| $D - H \cdots A$          | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------|------|-------------------------|--------------|--------------------------------------|
| N3-H3A···O3               | 0.86 | 1.95                    | 2.646 (3)    | 137                                  |
| $N3-H3B\cdotsO1^{ii}$     | 0.86 | 2.19                    | 2.894 (3)    | 139                                  |
| $C12-H12\cdots O2^{i}$    | 0.93 | 2.45                    | 3.004 (3)    | 118                                  |
| C21-H21···O1              | 0.93 | 2.49                    | 3.055 (3)    | 120                                  |
| C21-H21···O2              | 0.93 | 2.48                    | 3.033 (3)    | 118                                  |
| C7−H7···O1 <sup>iii</sup> | 0.93 | 2.56                    | 3.453 (3)    | 162                                  |
| $C8-H8\cdots O3^{iv}$     | 0.93 | 2.54                    | 3.394 (4)    | 153                                  |

Symmetry codes: (i) y - 1, x + 1, -z; (ii)  $y - \frac{1}{2}, -x + \frac{1}{2}, z - \frac{1}{4}$ ; (iii) y, x + 1, -z; (iv)  $x + \frac{1}{2}, -v + \frac{3}{2}, -z - \frac{1}{4}$ 

H atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C-H =0.93 Å and N-H = 0.86 Å. All H atoms were allocated displacement parameters related to those of their parent atoms  $[U_{iso}(H) =$  $1.2U_{eq}(C,N)].$ 

# metal-organic papers

Data collection: *APEXII* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2001; data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001) and *DIAMOND* (Brandenburg & Berndt, 1999); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge financial support from the Natural Science Foundation of Tianjin (No. 06YFJMJC03900) and the doctoral fund from Tianjin Normal University (to ECY).

#### References

Brandenburg, K. & Berndt, M. (1999). *DIAMOND*. Version 2.1c. Crystal Impact GbR, Bonn, Germany.

- Bruker (2001). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). APEXII. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, J. W., Chen, C. H., Liao, C. Z., Feng, X. L. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2370–2375.
- Cai, J. W., Chen, C. H., Liao, C. Z., Yao, J. H., Hu, X. P. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 1137–1142.
- Chen, C. H., Cai, J. W., Liao, C. Z., Feng, X. L., Chen, X. M. & Ng, S. W. (2002). *Inorg. Chem.* **41**, 4967–4974.
- Dalrymple, S. A., Parvez, M. & Shimizu, G. K. H. (2002). Inorg. Chem. 41, 6986–6996.
- Dalrymple, S. A. & Shimizu, G. K. H. (2002). Chem. Commun. pp. 2224–2225.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kosnic, E. J., McClymont, E. L., Hodder, R. A. & Squattrito, P. J. (1992). *Inorg. Chim. Acta*, 201, 143–151.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.